This article needs additional citations for verification. (May 2017) |
In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski norm F(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as
Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products.
Every Finsler manifold becomes an intrinsic quasimetric space when the distance between two points is defined as the infimum length of the curves that join them.
Élie Cartan (1933) named Finsler manifolds after Paul Finsler, who studied this geometry in his dissertation (Finsler 1918).