Flicker fusion threshold

The flicker fusion threshold, also known as critical flicker frequency or flicker fusion rate, is the frequency at which a flickering light appears steady to the average human observer. It is a concept studied in vision science, more specifically in the psychophysics of visual perception. A traditional term for "flicker fusion" is "persistence of vision", but this has also been used to describe positive afterimages or motion blur. Although flicker can be detected for many waveforms representing time-variant fluctuations of intensity, it is conventionally, and most easily, studied in terms of sinusoidal modulation of intensity.

There are seven parameters that determine the ability to detect the flicker:

  1. the frequency of the modulation;
  2. the amplitude or depth of the modulation (i.e., what is the maximum percent decrease in the illumination intensity from its peak value);
  3. the average (or maximum—these can be inter-converted if modulation depth is known) illumination intensity;
  4. the wavelength (or wavelength range) of the illumination (this parameter and the illumination intensity can be combined into a single parameter for humans or other animals for which the sensitivities of rods and cones are known as a function of wavelength using the luminous flux function);
  5. the position on the retina at which the stimulation occurs (due to the different distribution of photoreceptor types at different positions);
  6. the degree of light or dark adaptation, i.e., the duration and intensity of previous exposure to background light, which affects both the intensity sensitivity and the time resolution of vision;
  7. physiological factors such as age and fatigue.[1]
  1. ^ Davis S. W. (1955). "Auditory and visual flickerfusion as measures of fatigue". The American Journal of Psychology. 68 (4): 654–657. doi:10.2307/1418795. JSTOR 1418795. PMID 13275613.