In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
Classical flow mechanics in porous media assumes that the medium is homogenous, isotropic, and has an intergranular pore structure. It also assumes that the fluid is a Newtonian fluid, that the reservoir is isothermal, that the well is vertical, etc. Traditional flow issues in porous media often involve single-phase steady state flow, multi-well interference, oil-water two-phase flow, natural gas flow, elastic energy driven flow, oil-gas two-phase flow, and gas-water two-phase flow.[1]
The physicochemical flow process will involve various physical property changes and chemical reactions in contrast to the basic Newtonian fluid in the classical flow theory of porous system. Viscosity, surface tension, phase state, concentration, temperature, and other physical characteristics are examples of these properties. Non-Newtonian fluid flow, mass transfer through diffusion, and multiphase and multicomponent fluid flow are the primary flow issues.[2]