Fluorine | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | |||||||||||||||||||||
Allotropes | alpha, beta (see Allotropes of fluorine) | ||||||||||||||||||||
Appearance | gas: very pale yellow liquid: bright yellow solid: alpha is opaque, beta is transparent | ||||||||||||||||||||
Standard atomic weight Ar°(F) | |||||||||||||||||||||
Fluorine in the periodic table | |||||||||||||||||||||
| |||||||||||||||||||||
Atomic number (Z) | 9 | ||||||||||||||||||||
Group | group 17 (halogens) | ||||||||||||||||||||
Period | period 2 | ||||||||||||||||||||
Block | p-block | ||||||||||||||||||||
Electron configuration | [He] 2s2 2p5[3] | ||||||||||||||||||||
Electrons per shell | 2, 7 | ||||||||||||||||||||
Physical properties | |||||||||||||||||||||
Phase at STP | gas | ||||||||||||||||||||
Melting point | (F2) 53.48 K (−219.67 °C, −363.41 °F)[4] | ||||||||||||||||||||
Boiling point | (F2) 85.03 K (−188.11 °C, −306.60 °F)[4] | ||||||||||||||||||||
Density (at STP) | 1.696 g/L[5] | ||||||||||||||||||||
when liquid (at b.p.) | 1.505 g/cm3[6] | ||||||||||||||||||||
Triple point | 53.48 K, .252 kPa[7] | ||||||||||||||||||||
Critical point | 144.41 K, 5.1724 MPa[4] | ||||||||||||||||||||
Heat of vaporization | 6.51 kJ/mol[5] | ||||||||||||||||||||
Molar heat capacity | Cp: 31 J/(mol·K)[6] (at 21.1 °C) Cv: 23 J/(mol·K)[6] (at 21.1 °C) | ||||||||||||||||||||
Vapor pressure
| |||||||||||||||||||||
Atomic properties | |||||||||||||||||||||
Oxidation states | common: −1 | ||||||||||||||||||||
Electronegativity | Pauling scale: 3.98[3] | ||||||||||||||||||||
Ionization energies | |||||||||||||||||||||
Covalent radius | 64 pm[9] | ||||||||||||||||||||
Van der Waals radius | 135 pm[10] | ||||||||||||||||||||
Spectral lines of fluorine | |||||||||||||||||||||
Other properties | |||||||||||||||||||||
Natural occurrence | primordial | ||||||||||||||||||||
Crystal structure | cubic | ||||||||||||||||||||
Thermal conductivity | 0.02591 W/(m⋅K)[11] | ||||||||||||||||||||
Magnetic ordering | diamagnetic (−1.2×10−4)[12][13] | ||||||||||||||||||||
CAS Number | 7782-41-4[3] | ||||||||||||||||||||
History | |||||||||||||||||||||
Naming | after the mineral fluorite, itself named after Latin fluo (to flow, in smelting) | ||||||||||||||||||||
Discovery | André-Marie Ampère (1810) | ||||||||||||||||||||
First isolation | Henri Moissan[3] (June 26, 1886) | ||||||||||||||||||||
Named by | |||||||||||||||||||||
Isotopes of fluorine | |||||||||||||||||||||
| |||||||||||||||||||||
Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen[note 1] and exists at standard conditions as pale yellow diatomic gas. Fluorine is extremely reactive as it reacts with all other elements except for the light inert gases. It is highly toxic.
Among the elements, fluorine ranks 24th in cosmic abundance and 13th in crustal abundance. Fluorite, the primary mineral source of fluorine, which gave the element its name, was first described in 1529; as it was added to metal ores to lower their melting points for smelting, the Latin verb fluo meaning 'to flow' gave the mineral its name. Proposed as an element in 1810, fluorine proved difficult and dangerous to separate from its compounds, and several early experimenters died or sustained injuries from their attempts. Only in 1886 did French chemist Henri Moissan isolate elemental fluorine using low-temperature electrolysis, a process still employed for modern production. Industrial production of fluorine gas for uranium enrichment, its largest application, began during the Manhattan Project in World War II.
Owing to the expense of refining pure fluorine, most commercial applications use fluorine compounds, with about half of mined fluorite used in steelmaking. The rest of the fluorite is converted into hydrogen fluoride en route to various organic fluorides, or into cryolite, which plays a key role in aluminium refining. The carbon–fluorine bond is usually very stable. Organofluorine compounds are widely used as refrigerants, electrical insulation, and PTFE (Teflon). Pharmaceuticals such as atorvastatin and fluoxetine contain C−F bonds. The fluoride ion from dissolved fluoride salts inhibits dental cavities and so finds use in toothpaste and water fluoridation. Global fluorochemical sales amount to more than US$15 billion a year.
Fluorocarbon gases are generally greenhouse gases with global-warming potentials 100 to 23,500 times that of carbon dioxide, and SF6 has the highest global warming potential of any known substance. Organofluorine compounds often persist in the environment due to the strength of the carbon–fluorine bond. Fluorine has no known metabolic role in mammals; a few plants and marine sponges synthesize organofluorine poisons (most often monofluoroacetates) that help deter predation.[15]
Cite error: There are <ref group=note>
tags on this page, but the references will not show without a {{reflist|group=note}}
template (see the help page).