Fourier-transform ion cyclotron resonance

Fourier transform ion cyclotron resonance
AcronymFTICR
ClassificationMass spectrometry
Other techniques
RelatedIon trap
Quadrupole ion trap
Penning trap
Orbitrap

Fourier-transform ion cyclotron resonance mass spectrometry is a type of mass analyzer (or mass spectrometer) for determining the mass-to-charge ratio (m/z) of ions based on the cyclotron frequency of the ions in a fixed magnetic field.[1] The ions are trapped in a Penning trap (a magnetic field with electric trapping plates), where they are excited (at their resonant cyclotron frequencies) to a larger cyclotron radius by an oscillating electric field orthogonal to the magnetic field. After the excitation field is removed, the ions are rotating at their cyclotron frequency in phase (as a "packet" of ions). These ions induce a charge (detected as an image current) on a pair of electrodes as the packets of ions pass close to them. The resulting signal is called a free induction decay (FID), transient or interferogram that consists of a superposition of sine waves. The useful signal is extracted from this data by performing a Fourier transform to give a mass spectrum.

  1. ^ Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. (1998). "Fourier transform ion cyclotron resonance mass spectrometry: a primer". Mass Spectrom. Rev. 17 (1): 1–35. Bibcode:1998MSRv...17....1M. doi:10.1002/(sici)1098-2787(1998)17:1<1::aid-mas1>3.0.co;2-k. PMID 9768511.