Fourier ptychography is a computational imaging technique based on optical microscopy that consists in the synthesis of a wider numerical aperture from a set of full-field images acquired at various coherent illumination angles,[1] resulting in increased resolution compared to a conventional microscope.
Each image is acquired under the illumination of a coherent light source at various angles of incidence (typically from an array of LEDs); the acquired image set is then combined using an iterative phase retrieval algorithm into a final high-resolution image that can contain up to a billion pixels (a gigapixel) with diffraction-limited resolution, resulting in a high space-bandwidth product.
Fourier ptychography reconstructs the complex image of the object (with quantitative phase information), but contrary to holography, it is a non-interferometric imaging technique and thus often easier to implement.
The name "ptychography" comes from the ancient Greek word πτυχή ("to fold", also found in the word triptych), because the technique is based on multiple "views" of the object.