Part of a series on |
Classical mechanics |
---|
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points, defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers).[1] An important special case is that of inertial reference frames, a stationary or uniformly moving frame.
For n dimensions, n + 1 reference points are sufficient to fully define a reference frame. Using rectangular Cartesian coordinates, a reference frame may be defined with a reference point at the origin and a reference point at one unit distance along each of the n coordinate axes.[citation needed]
In Einsteinian relativity, reference frames are used to specify the relationship between a moving observer and the phenomenon under observation. In this context, the term often becomes observational frame of reference (or observational reference frame), which implies that the observer is at rest in the frame, although not necessarily located at its origin. A relativistic reference frame includes (or implies) the coordinate time, which does not equate across different reference frames moving relatively to each other. The situation thus differs from Galilean relativity, in which all possible coordinate times are essentially equivalent.[citation needed]