Frank Westheimer | |
---|---|
Born | Baltimore, Maryland, U.S.[1] | January 15, 1912
Died | April 14, 2007 Cambridge, Massachusetts, U.S. | (aged 95)
Alma mater | Dartmouth College (BA) Harvard University (MS, PhD) |
Known for | Mechanisms of enzyme catalysis, and kinetic isotope effects |
Awards | Centenary Prize (1962) Willard Gibbs Award (1970) NAS Award in Chemical Sciences (1980) Rosenstiel Award (1980) Arthur C. Cope Award (1982) Welch Award in Chemistry (1982) William H. Nichols Medal (1982) National Medal of Science (1986) Priestley Medal (1988) Nakanishi Prize (1997) |
Scientific career | |
Fields | Physical organic chemistry |
Institutions | National Academy of Sciences Harvard University |
Doctoral advisor | James Bryant Conant Elmer P. Kohler |
Doctoral students | Emil T. Kaiser, Roberta F. Colman, Steven A. Benner |
Frank Henry Westheimer (January 15, 1912 – April 14, 2007) was an American chemist. He taught at the University of Chicago from 1936 to 1954, and at Harvard University from 1953 to 1983, becoming the Morris Loeb Professor of Chemistry in 1960, and Professor Emeritus in 1983.[2] The Westheimer medal was established in his honor in 2002.[3]
Westheimer did pioneering work in physical organic chemistry,[4] applying techniques from physical to organic chemistry and integrating the two fields.[5] He explored the mechanisms of chemical and enzymatic reactions,[6] and made fundamental theoretical advances.[5]
Westheimer worked with John Gamble Kirkwood on the Bjerrum electrostatic analysis of carboxylic acids;[4][7][8] with Joseph Edward Mayer on the calculation of molecular mechanics;[4][9] explored the mechanisms of enzyme catalysis with Birgit Vennesland[4][6][10] and determined the mechanisms of chromic acid oxidations and kinetic isotope effects.[11][12]
He received the National Medal of Science in 1986 "For his series of extraordinary, original and penetrating investigations of the mechanisms of organic and enzymic reactions, which have played an unequaled role in the advancement of our knowledge of the ways in which chemical and biochemical processes proceed."[13]
Zerner
was invoked but never defined (see the help page).OH
was invoked but never defined (see the help page).Medal
was invoked but never defined (see the help page).