Frequency-dependent selection is an evolutionary process by which the fitness of a phenotype or genotype depends on the phenotype or genotype composition of a given population.
Frequency-dependent selection is usually the result of interactions between species (predation, parasitism, or competition), or between genotypes within species (usually competitive or symbiotic), and has been especially frequently discussed with relation to anti-predator adaptations. Frequency-dependent selection can lead to polymorphic equilibria, which result from interactions among genotypes within species, in the same way that multi-species equilibria require interactions between species in competition (e.g. where αij parameters in Lotka-Volterra competition equations are non-zero). Frequency-dependent selection can also lead to dynamical chaos when some individuals' fitnesses become very low at intermediate allele frequencies.[2][3]