Names | |
---|---|
IUPAC name
2,6-Di-O-phosphono-β-D-fructofuranose
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChemSpider | |
MeSH | fructose+2,6-bisphosphate |
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C6H14O12P2 | |
Molar mass | 340.114 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Fructose 2,6-bisphosphate, abbreviated Fru-2,6-P2, is a metabolite that allosterically affects the activity of the enzymes phosphofructokinase 1 (PFK-1) and fructose 1,6-bisphosphatase (FBPase-1) to regulate glycolysis and gluconeogenesis. [1] Fru-2,6-P2 itself is synthesized and broken down in either direction by the integrated bifunctional enzyme phosphofructokinase 2 (PFK-2/FBPase-2), which also contains a phosphatase domain and is also known as fructose-2,6-bisphosphatase.[2] Whether the kinase and phosphatase domains of PFK-2/FBPase-2 are active or inactive depends on the phosphorylation state of the enzyme.
Fructose-6-p-phosphate is phosphorylated by the kinase domain of PFK-2/FBPase-2 to Fru-2,6-P2 when PFK-2/FBPase-2 is active in a dephosphorylated state. This dephosphorylated state is favored by high levels of insulin, which activates the phosphatase domain.
The synthesis of Fru-2,6-P2 is performed through a bifunctional enzyme containing both PFK-2 and FBPase-2, which is dephosphorylated, allowing the PFK-2 portion to phosphorylate fructose 6-phosphate using ATP. The breakdown of Fru-2,6-P2 is catalyzed by the phosphorylation of the bifunctional enzyme, which allows FBPase-2 to dephosphorylate fructose 2,6-bisphosphate to produce fructose 6-phosphate and Pi.[3]