GSD microscopy

Comparison of resolution between standard confocal microscopy and GSD microscopy. Left: Confocal recording of vacancies in diamonds. Single spots cannot be separated. Right: GSD recording of the same location. Single vacancies are clearly visible. The size of the pointlike vacancies, corresponding to the microscope's resolution, is about 15 nm.

Ground state depletion microscopy (GSD microscopy) is an implementation of the RESOLFT concept. The method was proposed in 1995[1] and experimentally demonstrated in 2007.[2] It is the second concept to overcome the diffraction barrier in far-field optical microscopy published by Stefan Hell. Using nitrogen-vacancy centers in diamonds a resolution of up to 7.8 nm was achieved in 2009.[3] This is far below the diffraction limit (~200 nm).

  1. ^ Stefan W. Hell M. Kroug (1995). "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit". Applied Physics B: Lasers and Optics. 60 (5): 495–497. Bibcode:1995ApPhB..60..495H. doi:10.1007/BF01081333.
  2. ^ Stefan Bretschneider; Christian Eggeling; Stefan W. Hell (2007). "Breaking the diffraction barrier in fluorescence microscopy by optical shelving". Physical Review Letters. 98 (5): 218103. Bibcode:2007PhRvL..98u8103B. doi:10.1103/PhysRevLett.98.218103. hdl:11858/00-001M-0000-0012-E125-B. PMID 17677813.
  3. ^ Eva Rittweger; Dominik Wildanger; Stefan W. Hell (2009). "Far-field fluorescence nanoscopy of diamond color centers by ground state depletion" (PDF). EPL. 86 (1): 14001. Bibcode:2009EL.....8614001R. doi:10.1209/0295-5075/86/14001.