Ganglionic eminence

Ganglionic eminence
Interneurons (green) migrate tangentially from the ganglionic eminence to the cerebral cortex. The tangentially migrating interneurons travel perpendicular to the radial glial cells (red). The radially migrating interneurons travel parallel to the radial glial cells.
Identifiers
MeSHD000097803
Anatomical terminology

The ganglionic eminence (GE) is a transitory structure in the development of the nervous system that guides cell and axon migration.[1] It is present in the embryonic and fetal stages of neural development found between the thalamus and caudate nucleus.[1]

The eminence is divided into three regions of the ventral ventricular zone of the telencephalon (a lateral, medial and caudal eminence), where they facilitate tangential cell migration during embryonic development. Tangential migration does not involve interactions with radial glial cells; instead the interneurons migrate perpendicularly through the radial glial cells to reach their final location. The characteristics and function of the cells that follow the tangential migration pathway seem to be closely related to the location and precise timing of their production,[2] and the GEs contribute significantly to building up the GABAergic cortical cell population.[1][3][4] Another structure that the GEs contribute to is the basal ganglia.[5] The GEs also guide the axons growing from the thalamus into the cortex and vice versa.[1]

In humans, the GEs disappear by one year of age.[1] During development, neuronal migration continues until the extinction of the germ layer, at which point the remnants from the germ layer make up the eminences.[1]

  1. ^ a b c d e f Encha-Razavi & Sonigo. (2003). Features of the developing brain. Child's Nervous System. pp. 426–428
  2. ^ Marín, O; Rubenstein, JL (November 2001). "A long, remarkable journey: tangential migration in the telencephalon". Nature Reviews. Neuroscience. 2 (11): 780–90. doi:10.1038/35097509. PMID 11715055. S2CID 5604192.
  3. ^ Ghashghaei, HT; Lai, C; Anton, ES (February 2007). "Neuronal migration in the adult brain: are we there yet?". Nature Reviews. Neuroscience. 8 (2): 141–51. doi:10.1038/nrn2074. PMID 17237805. S2CID 9322780.
  4. ^ Hernández-Miranda, Parnavelas, & Chiara. (2010). Molecules & mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro, 2(2). pp. 75-86.
  5. ^ Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A.S., McNamara, J., and White, L. (2008). Neuroscience. 4th ed. Sinauer Associates. pp. 555–8. ISBN 978-0-87893-697-7.{{cite book}}: CS1 maint: multiple names: authors list (link)