Gaussian beam

Instantaneous absolute value of the real part of electric field amplitude of a TEM00 gaussian beam, focal region. Showing thus with two peaks for each positive wavefront.
Top: transverse intensity profile of a Gaussian beam that is propagating out of the page. Blue curve: electric (or magnetic) field amplitude vs. radial position from the beam axis. The black curve is the corresponding intensity.
A 5 mW green laser pointer beam, showing the TEM00 profile

In optics, a Gaussian beam is an idealized beam of electromagnetic radiation whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This fundamental (or TEM00) transverse Gaussian mode describes the intended output of many lasers, as such a beam diverges less and can be focused better than any other. When a Gaussian beam is refocused by an ideal lens, a new Gaussian beam is produced. The electric and magnetic field amplitude profiles along a circular Gaussian beam of a given wavelength and polarization are determined by two parameters: the waist w0, which is a measure of the width of the beam at its narrowest point, and the position z relative to the waist.[1]

Since the Gaussian function is infinite in extent, perfect Gaussian beams do not exist in nature, and the edges of any such beam would be cut off by any finite lens or mirror. However, the Gaussian is a useful approximation to a real-world beam for cases where lenses or mirrors in the beam are significantly larger than the spot size w(z) of the beam

Fundamentally, the Gaussian is a solution of the axial Helmholtz equation, the wave equation for an electromagnetic field. Although there exist other solutions, the Gaussian families of solutions are useful for problems involving compact beams.

  1. ^ Svelto, pp. 153–5.