GeSbTe

GeSbTe (germanium-antimony-tellurium or GST) is a phase-change material from the group of chalcogenide glasses used in rewritable optical discs and phase-change memory applications. Its recrystallization time is 20 nanoseconds, allowing bitrates of up to 35 Mbit/s to be written and direct overwrite capability up to 106 cycles. It is suitable for land-groove recording formats. It is often used in rewritable DVDs. New phase-change memories are possible using n-doped GeSbTe semiconductor. The melting point of the alloy is about 600 °C (900 K) and the crystallization temperature is between 100 and 150 °C.

During writing, the material is erased, initialized into its crystalline state, with low-intensity laser irradiation. The material heats up to its crystallization temperature, but not its melting point, and crystallizes. The information is written at the crystalline phase, by heating spots of it with short (<10 ns), high-intensity laser pulses; the material melts locally and is quickly cooled, remaining in the amorphous phase. As the amorphous phase has lower reflectivity than the crystalline phase, data can be recorded as dark spots on the crystalline background. Recently, novel liquid organogermanium precursors, such as isobutylgermane[1][2][3] (IBGe) and tetrakis(dimethylamino)germane[4][5] (TDMAGe) were developed and used in conjunction with the metalorganics of antimony and tellurium, such as tris-dimethylamino antimony (TDMASb) and di-isopropyl telluride (DIPTe) respectively, to grow GeSbTe and other chalcogenide films of very high purity by metalorganic chemical vapor deposition (MOCVD). Dimethylamino germanium trichloride [6] (DMAGeC) is also reported as the chloride containing and superior dimethylaminogermanium precursor for Ge deposition by MOCVD.

  1. ^ Deo V. Shenai, Ronald L. DiCarlo, Michael B. Power, Artashes Amamchyan, Randall J. Goyette, Egbert Woelk; Dicarlo; Power; Amamchyan; Goyette; Woelk (2007). "Safer alternative liquid germanium precursors for MOVPE". Journal of Crystal Growth. 298: 172–175. Bibcode:2007JCrGr.298..172S. doi:10.1016/j.jcrysgro.2006.10.194.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Bosi, M.; Attolini, G.; Ferrari, C.; Frigeri, C.; Rimada Herrera, J.C.; Gombia, E.; Pelosi, C.; Peng, R.W. (2008). "MOVPE growth of homoepitaxial germanium". Journal of Crystal Growth. 310 (14): 3282. Bibcode:2008JCrGr.310.3282B. doi:10.1016/j.jcrysgro.2008.04.009.
  3. ^ Attolini, G.; Bosi, M.; Musayeva, N.; Pelosi, C.; Ferrari, C.; Arumainathan, S.; Timò, G. (2008). "Homo and hetero epitaxy of Germanium using isobutylgermane". Thin Solid Films. 517 (1): 404–406. Bibcode:2008TSF...517..404A. doi:10.1016/j.tsf.2008.08.137.
  4. ^ M. Longo, O. Salicio, C. Wiemer, R. Fallica, A. Molle, M. Fanciulli, C. Giesen, B. Seitzinger,P.K. Baumann, M. Heuken, S. Rushworth; Salicio; Wiemer; Fallica; Molle; Fanciulli; Giesen; Seitzinger; Baumann; Heuken; Rushworth (2008). "Growth study of GexSbyTez deposited by MOCVD under nitrogen for non-volatile memory applications". Journal of Crystal Growth. 310 (23): 5053–5057. Bibcode:2008JCrGr.310.5053L. doi:10.1016/j.jcrysgro.2008.07.054.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ A. Abrutis, V. Plausinaitiene, M. Skapas, C. Wiemer, O. Salicio, A. Pirovano, E. Varesi, S. Rushworth, W. Gawelda, J. Siegel; Plausinaitiene; Skapas; Wiemer; Salicio; Pirovano; Varesi; Rushworth; Gawelda; Siegel (2008). "Hot-Wire Chemical Vapor Deposition of Chalcogenide Materials for Phase Change Memory Applications". Chemistry of Materials. 20 (11): 3557. doi:10.1021/cm8004584. hdl:10261/93002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ X. Shi; M. Schaekers; F. Leys; R. Loo; M. Caymax; R. Brus; C. Zhao; B. Lamare; E. Woelk; D. Shenai (2006). "Germanium Precursors for Ge and SiGe Deposition". ECS Transactions. 3: 849. doi:10.1149/1.2355880. S2CID 110550188.