The geochemistry of carbon is the study of the transformations involving the element carbon within the systems of the Earth. To a large extent this study is organic geochemistry, but it also includes the very important carbon dioxide. Carbon is transformed by life, and moves between the major phases of the Earth, including the water bodies, atmosphere, and the rocky parts. Carbon is important in the formation of organic mineral deposits, such as coal, petroleum or natural gas. Most carbon is cycled through the atmosphere into living organisms and then respirated back into the atmosphere. However an important part of the carbon cycle involves the trapping of living matter into sediments. The carbon then becomes part of a sedimentary rock when lithification happens. Human technology or natural processes such as weathering, or underground life or water can return the carbon from sedimentary rocks to the atmosphere. From that point it can be transformed in the rock cycle into metamorphic rocks, or melted into igneous rocks. Carbon can return to the surface of the Earth by volcanoes or via uplift in tectonic processes. Carbon is returned to the atmosphere via volcanic gases. Carbon undergoes transformation in the mantle under pressure to diamond and other minerals, and also exists in the Earth's outer core in solution with iron, and may also be present in the inner core.[1]
Carbon can form a huge variety stable compounds. It is an essential component of living matter. Living organisms can live in a limited range of conditions on the Earth that are limited by temperature and the existence of liquid water. The potential habitability of other planets or moons can also be assessed by the existence of liquid water.[1]
Carbon makes up only 0.08% of the combination of the lithosphere, hydrosphere, and atmosphere. Yet it is the twelfth most common element there. In the rock of the lithosphere, carbon commonly occurs as carbonate minerals containing calcium or magnesium. It is also found as fossil fuels in coal and petroleum and gas. Native forms of carbon are much rarer, requiring pressure to form. Pure carbon exists as graphite or diamond.[1]
The deeper parts of Earth such as the mantle are very hard to discover. Few samples are known, in the form of uplifted rocks, or xenoliths. Even fewer remain in the same state they were in where the pressure and temperature is much higher. Some diamonds retain inclusions held at pressures they were formed at, but the temperature is much lower at the surface. Iron meteorites may represent samples of the core of an asteroid, but it would have formed under different conditions to the Earth's core. Therefore, experimental studies are conducted in which minerals or substances are compressed and heated to determine what happens in similar conditions to the planetary interior.
The two common isotopes of carbon are stable. On Earth, carbon 12, 12C is by far the most common at 98.894%. Carbon 13 is much rarer averaging 1.106%. This percentage can vary slightly and its value is important in isotope geochemistry whereby the origin of the carbon is suggested.[1]