Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes, hemispherical architectural structures designed by Buckminster Fuller, which geodesic polyhedra are named after. Geodesic grids used in geodesy also have the geometry of geodesic polyhedra. The capsids of some viruses have the shape of geodesic polyhedra,[1][2] and some pollen grains are based on geodesic polyhedra.[3]Fullerene molecules have the shape of Goldberg polyhedra. Geodesic polyhedra are available as geometric primitives in the Blender 3D modeling software package, which calls them icospheres: they are an alternative to the UV sphere, having a more regular distribution.[4][5] The Goldberg–Coxeter construction is an expansion of the concepts underlying geodesic polyhedra.
3 constructions for a {3,5+}6,0
An icosahedron and related symmetry polyhedra can be used to define a high geodesic polyhedron by dividing triangular faces into smaller triangles, and projecting all the new vertices onto a sphere. Higher order polygonal faces can be divided into triangles by adding new vertices centered on each face. The new faces on the sphere are not equilateral triangles, but they are approximately equal edge length. All vertices are valence-6 except 12 vertices which are valence 5.
Construction of {3,5+}3,3
Geodesic subdivisions can also be done from an augmented dodecahedron, dividing pentagons into triangles with a center point, and subdividing from that.
Construction of {3,5+}6,3
Chiral polyhedra with higher order polygonal faces can be augmented with central points and new triangle faces. Those triangles can then be further subdivided into smaller triangles for new geodesic polyhedra. All vertices are valence-6 except the 12 centered at the original vertices which are valence 5.
^Caspar, D. L. D.; Klug, A. (1962). "Physical Principles in the Construction of Regular Viruses". Cold Spring Harb. Symp. Quant. Biol. 27: 1–24. doi:10.1101/sqb.1962.027.001.005. PMID14019094.
^Coxeter, H.S.M. (1971). "Virus macromolecules and geodesic domes.". In Butcher, J. C. (ed.). A spectrum of mathematics. Oxford University Press. pp. 98–107.