Glass ionomer cement

Glass ionomer

A glass ionomer cement (GIC) is a dental restorative material used in dentistry as a filling material and luting cement,[1] including for orthodontic bracket attachment.[2] Glass-ionomer cements are based on the reaction of silicate glass-powder (calciumaluminofluorosilicate glass[3]) and polyacrylic acid, an ionomer. Occasionally water is used instead of an acid,[2] altering the properties of the material and its uses.[4] This reaction produces a powdered cement of glass particles surrounded by matrix of fluoride elements and is known chemically as glass polyalkenoate.[5] There are other forms of similar reactions which can take place, for example, when using an aqueous solution of acrylic/itaconic copolymer with tartaric acid, this results in a glass-ionomer in liquid form. An aqueous solution of maleic acid polymer or maleic/acrylic copolymer with tartaric acid can also be used to form a glass-ionomer in liquid form. Tartaric acid plays a significant part in controlling the setting characteristics of the material.[5] Glass-ionomer based hybrids incorporate another dental material, for example resin-modified glass ionomer cements (RMGIC) and compomers (or modified composites).[5]

Non-destructive neutron scattering has evidenced GIC setting reactions to be non-monotonic, with eventual fracture toughness dictated by changing atomic cohesion, fluctuating interfacial configurations and interfacial terahertz (THz) dynamics.[6]

It is on the World Health Organization's List of Essential Medicines.[7]

  1. ^ Sidhu, SK. (2011). "Glass-ionomer cement restorative materials: A sticky subject?". Australian Dental Journal. 56: 23–30. doi:10.1111/j.1834-7819.2010.01293.x. PMID 21564113.
  2. ^ a b Millett DT, Glenny AM, Mattick RC, Hickman J, Mandall NA (2016-10-25). "Adhesives for fixed orthodontic bands". The Cochrane Database of Systematic Reviews. 10 (11): CD004485. doi:10.1002/14651858.CD004485.pub4. ISSN 1469-493X. PMC 6461193. PMID 27779317.
  3. ^ Sonis ST (2003). Dental Secrets (3 ed.). Philadelphia: Hanley & Belfus. p. 158.
  4. ^ Van Noort R, Barbour M (2013). Introduction to Dental Materials (4 ed.). Edinburgh: Elsevier Health Sciences. pp. 95–106.
  5. ^ a b c McCabe JF, Walls AW (2008). Applied Dental Materials (9 ed.). Oxford, United Kingdom: Wiley-Blackwell (an imprint of John Wiley & Sons Ltd). pp. 284–287.
  6. ^ Tian KV, Yang B, Yue Y, Bowron DT, Mayers J, Donnan RS, Dobó-Nagy C, Nicholson JW, Fang DC, Greer AL, Chass GA, Greaves GN (2015-11-09). "Atomic and vibrational origins of mechanical toughness in bioactive cement during setting". Nature Communications. 6 (8631): 8631. Bibcode:2015NatCo...6.8631T. doi:10.1038/ncomms9631. ISSN 2041-1723. PMC 4659834. PMID 26548704.
  7. ^ World Health Organization (2021). World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. hdl:10665/345533. WHO/MHP/HPS/EML/2021.02.