Glueball

In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle.[1] It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states.[2][3] In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable.[4]

Theoretical calculations show that glueballs should exist at energy ranges accessible with current collider technology. However, due to the aforementioned difficulty (among others), they have so far not been observed and identified with certainty,[5] although phenomenological calculations have suggested that an experimentally identified glueball candidate, denoted , has properties consistent with those expected of a Standard Model glueball.[6]

The prediction that glueballs exist is one of the most important predictions of the Standard Model of particle physics that has not yet been confirmed experimentally.[7][failed verification] Glueballs are the only particles predicted by the Standard Model with total angular momentum (J) (sometimes called "intrinsic spin") that could be either 2 or 3 in their ground states.

Experimental evidence was announced in 2021, by the TOTEM collaboration at the LHC in collaboration with the DØ collaboration at the former Tevatron collider at Fermilab, of odderon (a composite gluonic particle with odd C-parity) exchange. This exchange, associated with a quarkless three-gluon vector glueball, was identified in the comparison of proton–proton and proton–antiproton scattering.[8][9][10] In 2024, the X(2370) particle was determined to have mass and spin parity consistent with that of a glueball.[11] However, other exotic particle candidates such as a tetraquark could not be ruled out.[12]

  1. ^ Close, Frank; Page, Phillip R. (November 1998). "Glueballs". Scientific American. 279 (5): 80–85. Bibcode:1998SciAm.279e..80C. doi:10.1038/scientificamerican1198-80. JSTOR 26058158.
  2. ^ Mathieu, Vincent; Kochelev, Nikolai; Vento, Vicente (2009). "The Physics of Glueballs". International Journal of Modern Physics E. 18 (1): 1–49. arXiv:0810.4453. Bibcode:2009IJMPE..18....1M. doi:10.1142/S0218301309012124. S2CID 119229404.
  3. ^ Glueball on arxiv.org
  4. ^ Shuryak, E. (2021). "Chapter 9". Nonperturbative Topological Phenomena in QCD and Related Theories. Springer. p. 233. ISBN 978-3030629892.
  5. ^ Ochs, Wolfgang (2013). "The status of glueballs". Journal of Physics G. 40 (4): 043001. arXiv:1301.5183. Bibcode:2013JPhG...40d3001O. doi:10.1088/0954-3899/40/4/043001. S2CID 73696704.
  6. ^ Brünner, Frederic; Rebhan, Anton (2015-09-21). "Nonchiral Enhancement of Scalar Glueball Decay in the Witten–Sakai–Sugimoto Model". Physical Review Letters. 115 (13): 131601. arXiv:1504.05815. Bibcode:2015PhRvL.115m1601B. doi:10.1103/PhysRevLett.115.131601. PMID 26451541. S2CID 14043746.
  7. ^ Hsiao, Y.K.; Geng, C.Q. (2013). "Identifying glueball at 3.02 GeV in baryonic B decays". Physics Letters B. 727 (1–3): 168–171. arXiv:1302.3331. Bibcode:2013PhLB..727..168H. doi:10.1016/j.physletb.2013.10.008. S2CID 119235634.
  8. ^ D0 collaboration; TOTEM Collaboration; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A. (2021-08-04). "Odderon Exchange from Elastic Scattering Differences between pp and pp Data at 1.96 TeV and from pp Forward Scattering Measurements". Physical Review Letters. 127 (6): 062003. arXiv:2012.03981. doi:10.1103/PhysRevLett.127.062003. hdl:10138/333366. PMID 34420329. S2CID 237267938.
  9. ^ Chalmers, Matthew (9 March 2021). "Odderon discovered". CERN Courier. Retrieved 13 April 2021.
  10. ^ Csörgő, T.; Novák, T.; Ster, A.; Szanyi, I. (23 February 2021). "Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies". The European Physical Journal C. 81 (180). Springer Nature Switzerland AG.: 180. arXiv:1912.11968. Bibcode:2021EPJC...81..180C. doi:10.1140/epjc/s10052-021-08867-6. ISSN 1434-6052.
  11. ^ Ablikim, M.; et al. (BESIII Collaboration) (May 2024). "Determination of Spin-Parity Quantum Numbers of X(2370) as 0−+ from J/ψ → γK0
    S
    K0
    η′". Physical Review Letters. 132 (18): 181901. arXiv:2312.05324. doi:10.1103/PhysRevLett.132.181901.
  12. ^ "New particle at last! Physicists detect the first "glueball"". Big Think. 2024-05-07. Retrieved 2024-05-08.