Glypiation

Glypiation is the addition by covalent bonding of a glycosylphosphatidylinositol (GPI) anchor and is a common post-translational modification that localizes proteins to cell membranes. This special kind of glycosylation is widely detected on surface glycoproteins in eukaryotes and some Archaea.[1]

GPI anchors consist of a phosphoethanolamine linker that binds to the C-terminus of target proteins. Glycan's core structure has a phospholipid tail that anchors the structure to the membrane.

Both the lipid moiety of the tail and the sugar residues in the glycan core have considerable variation,[2][3][4][5][6][7] demonstrating vast functional diversity that includes signal transduction, cell adhesion and immune recognition.[8] GPI anchors can also be cleaved by enzymes such as phospholipase C to regulate the localization of proteins that are anchored at the plasma membrane.

  1. ^ Kobayashi T. et al. (1997) The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes. Biochim Biophys Acta. 1334, 1-4.
  2. ^ Nosjean O. et al. (1997) Mammalian GPI proteins: Sorting, membrane residence and functions. Biochim Biophys Acta. 1331, 153-86.
  3. ^ Thomas J. R. et al. (1990) Structure, biosynthesis, and function of glycosylphosphatidylinositols. Biochemistry. 29, 5413-22.
  4. ^ Ikezawa H. (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull. 25, 409-17.
  5. ^ Brewis I. A. et al. (1995) Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem. 270, 22946-56.
  6. ^ Low M. G. (1989) Glycosyl-phosphatidylinositol: A versatile anchor for cell surface proteins. FASEB J. 3, 1600-8.
  7. ^ Low M. G. and Saltiel A. R. (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 239, 268-75.
  8. ^ Vainauskas S. and Menon A. K. (2006) Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase. J Biol Chem. 281, 38358-64.