Great ditrigonal icosidodecahedron | |
---|---|
Type | Uniform star polyhedron |
Elements | F = 32, E = 60 V = 20 (χ = −8) |
Faces by sides | 20{3}+12{5} |
Coxeter diagram | |
Wythoff symbol | 3/2 | 3 5 3 | 3/2 5 3 | 3 5/4 3/2 | 3/2 5/4 |
Symmetry group | Ih, [5,3], *532 |
Index references | U47, C61, W87 |
Dual polyhedron | Great triambic icosahedron |
Vertex figure | ((3.5)3)/2 |
Bowers acronym | Gidtid |
In geometry, the great ditrigonal icosidodecahedron (or great ditrigonary icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U47. It has 32 faces (20 triangles and 12 pentagons), 60 edges, and 20 vertices.[1] It has 4 Schwarz triangle equivalent constructions, for example Wythoff symbol 3 | 3 5⁄4 gives Coxeter diagram = . It has extended Schläfli symbol a{5⁄2,3} or c{3,5⁄2}, as an altered great stellated dodecahedron or converted great icosahedron.
Its circumradius is times the length of its edge,[2] a value it shares with the cube.