Groundwater flow equation

Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid (heat conduction). The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.

The groundwater flow equation is often derived for a small representative elemental volume (REV), where the properties of the medium are assumed to be effectively constant. A mass balance is done on the water flowing in and out of this small volume, the flux terms in the relationship being expressed in terms of head by using the constitutive equation called Darcy's law, which requires that the flow is laminar. Other approaches are based on Agent Based Models to incorporate the effect of complex aquifers such as karstic or fractured rocks (i.e. volcanic) [1]

  1. ^ Corona, Oliver López; Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis (2014-10-16). "Complex groundwater flow systems as traveling agent models". PeerJ. 2: e557. doi:10.7717/peerj.557. ISSN 2167-8359. PMC 4203025. PMID 25337455.