Gudermannian function

The Gudermannian function relates the area of a circular sector to the area of a hyperbolic sector, via a common stereographic projection. If twice the area of the blue hyperbolic sector is ψ, then twice the area of the red circular sector is ϕ = gd ψ. Twice the area of the purple triangle is the stereographic projection s = tan 1/2ϕ = tanh 1/2ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s).
Graph of the Gudermannian function.
Graph of the inverse Gudermannian function.

In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted .[1] The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830.[2] The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter

The real Gudermannian function is typically defined for to be the integral of the hyperbolic secant[3]

The real inverse Gudermannian function can be defined for as the integral of the (circular) secant

The hyperbolic angle measure is called the anti-gudermannian of or sometimes the lambertian of , denoted [4] In the context of geodesy and navigation for latitude , (scaled by arbitrary constant ) was historically called the meridional part of (French: latitude croissante). It is the vertical coordinate of the Mercator projection.

The two angle measures and are related by a common stereographic projection

and this identity can serve as an alternative definition for and valid throughout the complex plane:

  1. ^ The symbols and were chosen for this article because they are commonly used in geodesy for the isometric latitude (vertical coordinate of the Mercator projection) and geodetic latitude, respectively, and geodesy/cartography was the original context for the study of the Gudermannian and inverse Gudermannian functions.
  2. ^ Gudermann published several papers about the trigonometric and hyperbolic functions in Crelle's Journal in 1830–1831. These were collected in a book, Gudermann (1833).
  3. ^ Roy & Olver (2010) §4.23(viii) "Gudermannian Function"; Beyer (1987)
  4. ^ Kennelly (1929); Lee (1976)