Histone methylation on tail of histone H3 associated with gene bodies
H3K9me2 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the di-methylation at the 9th lysine residue of the histone H3 protein. H3K9me2 is strongly associated with transcriptional repression.[1][2][3] H3K9me2 levels are higher at silent compared to active genes in a 10kb region surrounding the transcriptional start site.[4] H3K9me2 represses gene expression both passively, by prohibiting acetylation[5] as therefore binding of RNA polymerase or its regulatory factors, and actively, by recruiting transcriptional repressors.[6][7] H3K9me2 has also been found in megabase blocks, termed Large Organised Chromatin K9 domains (LOCKS), which are primarily located within gene-sparse regions but also encompass genic and intergenic intervals.[8][9][10][11] Its synthesis is catalyzed by G9a, G9a-like protein, and PRDM2.[1][3][12] H3K9me2 can be removed by a wide range of histone lysine demethylases (KDMs) including KDM1, KDM3, KDM4 and KDM7 family members.[13][6] H3K9me2 is important for various biological processes including cell lineage commitment,[10][14] the reprogramming of somatic cells to induced pluripotent stem cells,[15] regulation of the inflammatory response,[16][17] and addiction to drug use.[2][18][19][20]
^ ab"H3K9me2". HIstome: The Histone Infobase. Archived from the original on 12 June 2018. Retrieved 8 June 2018.
^ abCite error: The named reference Nestler1 was invoked but never defined (see the help page).