HR 5110

HR 5110

A light curve for BH Canum Venaticorum, plotted from TESS data[1]
Observation data
Epoch J2000      Equinox J2000
Constellation Canes Venatici
Right ascension 13h 34m 47.80827s[2]
Declination +37° 10′ 56.6979″[2]
Apparent magnitude (V) 4.91[3]
Characteristics
Spectral type kA6hF1mF2[4] (F2 IV + K0 IV)[5]
B−V color index 0.404±0.010[3]
Variable type RS CVn[5]
Astrometry
Radial velocity (Rv)6.43±0.24[3] km/s
Proper motion (μ) RA: +84.63[2] mas/yr
Dec.: −9.34[2] mas/yr
Parallax (π)21.90 ± 0.23 mas[2]
Distance149 ± 2 ly
(45.7 ± 0.5 pc)
Absolute magnitude (MV)1.61[3]
Orbit[6]
Period (P)2.613214 d
Semi-major axis (a)0.017 AU
Eccentricity (e)0.00
Inclination (i)171.1°
Longitude of the node (Ω)89±10°
Periastron epoch (T)2,445,766.655
Details
BH CVn A
Mass1.5[6] M
Radius2.6[6] R
Luminosity19.01[3] L
Surface gravity (log g)3.61±0.14[7] cgs
Temperature6,569±223[7] K
Metallicity [Fe/H]−0.20[3] dex
Age1.36[7] Gyr
BH CVn B
Mass0.8[6] M
Radius3.4[6] R
Other designations
BH CVn, BD+37° 2426, FK5 502, HD 118216, HIP 66257, HR 5110, SAO 63623[8]
Database references
SIMBADdata

HR 5110, also known as BH Canum Venaticorum, is a binary star[6] system in the northern constellation of Canes Venatici. It is visible to the naked eye with an apparent visual magnitude of 4.91.[3] Based upon an annual parallax shift of 21.90±0.23 mas,[2] it is located 149 light-years away. The system is moving further from the Sun with a heliocentric radial velocity of 6.4 km/s.[3]

This is a close binary system with an orbital period of 2.6 days and an orbital plane that is oriented nearly face-on.[6] It may be considered an Algol-type semidetached binary. The hotter primary component has a stellar classification of F2 IV,[5] indicating it is an evolving subgiant star that is leaving the main sequence after consuming the hydrogen at its core.

HR 5110 is classified as a RS Canum Venaticorum variable system, primarily due to chromospheric activity in the secondary component.[5] This star has a classification of K0 IV, matching a K-type subgiant star.[5] Based upon the close separation of the pair and the class of the secondary component, that latter is probably filling its roche lobe. This star is most likely the source of the radio emission from this system, and the alignment of this signal is consistent with a polar starspot.[6]

  1. ^ Cite error: The named reference MAST was invoked but never defined (see the help page).
  2. ^ a b c d e f Cite error: The named reference vanLeeuwen2007 was invoked but never defined (see the help page).
  3. ^ a b c d e f g h Cite error: The named reference Anderson2012 was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference abt2009 was invoked but never defined (see the help page).
  5. ^ a b c d e Cite error: The named reference Ransom2003 was invoked but never defined (see the help page).
  6. ^ a b c d e f g h Cite error: The named reference Abbuhl2015 was invoked but never defined (see the help page).
  7. ^ a b c Cite error: The named reference David2015 was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference SIMBAD was invoked but never defined (see the help page).