In graph theory, the Hadwiger number of an undirected graph G is the size of the largest complete graph that can be obtained by contracting edges of G. Equivalently, the Hadwiger number h(G) is the largest number n for which the complete graph Kn is a minor of G, a smaller graph obtained from G by edge contractions and vertex and edge deletions. The Hadwiger number is also known as the contraction clique number of G[1] or the homomorphism degree of G.[2] It is named after Hugo Hadwiger, who introduced it in 1943 in conjunction with the Hadwiger conjecture, which states that the Hadwiger number is always at least as large as the chromatic number of G.
The graphs that have Hadwiger number at most four have been characterized by Wagner (1937). The graphs with any finite bound on the Hadwiger number are sparse, and have small chromatic number. Determining the Hadwiger number of a graph is NP-hard but fixed-parameter tractable.