Hamming graph

Hamming graph
Named afterRichard Hamming
Verticesqd
Edges
Diameterd
Spectrum
Propertiesd(q – 1)-regular
Vertex-transitive
Distance-regular[1] Distance-balanced[2]
NotationH(d,q)
Table of graphs and parameters
H(3,3) drawn as a unit distance graph

Hamming graphs are a special class of graphs named after Richard Hamming and used in several branches of mathematics (graph theory) and computer science. Let S be a set of q elements and d a positive integer. The Hamming graph H(d,q) has vertex set Sd, the set of ordered d-tuples of elements of S, or sequences of length d from S. Two vertices are adjacent if they differ in precisely one coordinate; that is, if their Hamming distance is one. The Hamming graph H(d,q) is, equivalently, the Cartesian product of d complete graphs Kq.[1]

In some cases, Hamming graphs may be considered more generally as the Cartesian products of complete graphs that may be of varying sizes.[3] Unlike the Hamming graphs H(d,q), the graphs in this more general class are not necessarily distance-regular, but they continue to be regular and vertex-transitive.

  1. ^ a b Brouwer, Andries E.; Haemers, Willem H. (2012), "12.3.1 Hamming graphs" (PDF), Spectra of graphs, Universitext, New York: Springer, p. 178, doi:10.1007/978-1-4614-1939-6, ISBN 978-1-4614-1938-9, MR 2882891, retrieved 2022-08-08.
  2. ^ Karami, Hamed (2022), "Edge distance-balanced of Hamming graphs", Journal of Discrete Mathematical Sciences and Cryptography, 25: 2667–2672, doi:10.1080/09720529.2021.1914363.
  3. ^ Imrich, Wilfried; Klavžar, Sandi (2000), "Hamming graphs", Product graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, pp. 104–106, ISBN 978-0-471-37039-0, MR 1788124.