In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation. Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than n such that the polynomial and its first few derivatives have the same values at m (fewer than n) given points as the given function and its first few derivatives at those points. The number of pieces of information, function values and derivative values, must add up to .
Hermite's method of interpolation is closely related to the Newton's interpolation method, in that both can be derived from the calculation of divided differences. However, there are other methods for computing a Hermite interpolating polynomial. One can use linear algebra, by taking the coefficients of the interpolating polynomial as unknowns, and writing as linear equations the constraints that the interpolating polynomial must satisfy. For another method, see Chinese remainder theorem § Hermite interpolation. For yet another method, see,[1] which uses contour integration.