Heterogeneous nuclear ribonucleoproteins (hnRNPs) are complexes of RNA and protein present in the cell nucleus during gene transcription and subsequent post-transcriptional modification of the newly synthesized RNA (pre-mRNA). The presence of the proteins bound to a pre-mRNA molecule serves as a signal that the pre-mRNA is not yet fully processed and therefore not ready for export to the cytoplasm.[1] Since most mature RNA is exported from the nucleus relatively quickly, most RNA-binding protein in the nucleus exist as heterogeneous ribonucleoprotein particles. After splicing has occurred, the proteins remain bound to spliced introns and target them for degradation.
hnRNPs are also integral to the 40S subunit of the ribosome and therefore important for the translation of mRNA in the cytoplasm.[2] However, hnRNPs also have their own nuclear localization sequences (NLS) and are therefore found mainly in the nucleus. Though it is known that a few hnRNPs shuttle between the cytoplasm and nucleus, immunofluorescence microscopy with hnRNP-specific antibodies shows nucleoplasmic localization of these proteins with little staining in the nucleolus or cytoplasm.[3] This is likely because of its major role in binding to newly transcribed RNAs. High-resolution immunoelectron microscopy has shown that hnRNPs localize predominantly to the border regions of chromatin, where it has access to these nascent RNAs.[4]
The proteins involved in the hnRNP complexes are collectively known as heterogeneous ribonucleoproteins. They include protein K and polypyrimidine tract-binding protein (PTB), which is regulated by phosphorylation catalyzed by protein kinase A and is responsible for suppressing RNA splicing at a particular exon by blocking access of the spliceosome to the polypyrimidine tract.[5]: 326 hnRNPs are also responsible for strengthening and inhibiting splice sites by making such sites more or less accessible to the spliceosome.[6] Cooperative interactions between attached hnRNPs may encourage certain splicing combinations while inhibiting others.[7]