Hexagonal tiling honeycomb

Hexagonal tiling honeycomb

Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {6,3,3}
t{3,6,3}
2t{6,3,6}
2t{6,3[3]}
t{3[3,3]}
Coxeter diagrams




Cells {6,3}
Faces hexagon {6}
Edge figure triangle {3}
Vertex figure
tetrahedron {3,3}
Dual Order-6 tetrahedral honeycomb
Coxeter groups , [3,3,6]
, [3,6,3]
, [6,3,6]
, [6,3[3]]
, [3[3,3]]
Properties Regular

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,3}. Since that of the hexagonal tiling is {6,3}, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is {3,3}, the vertex figure of this honeycomb is a tetrahedron. Thus, four hexagonal tilings meet at each vertex of this honeycomb, six hexagons meet at each vertex, and four edges meet at each vertex.[1]

  1. ^ Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III