Hierarchical Dirichlet process

In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data.[1][2] It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process. This method allows groups to share statistical strength via sharing of clusters across groups. The base distribution being drawn from a Dirichlet process is important, because draws from a Dirichlet process are atomic probability measures, and the atoms will appear in all group-level Dirichlet processes. Since each atom corresponds to a cluster, clusters are shared across all groups. It was developed by Yee Whye Teh, Michael I. Jordan, Matthew J. Beal and David Blei and published in the Journal of the American Statistical Association in 2006,[1] as a formalization and generalization of the infinite hidden Markov model published in 2002.[3]

  1. ^ a b Teh, Y. W.; Jordan, M. I.; Beal, M. J.; Blei, D. M. (2006). "Hierarchical Dirichlet Processes" (PDF). Journal of the American Statistical Association. 101 (476): pp. 1566–1581. CiteSeerX 10.1.1.5.9094. doi:10.1198/016214506000000302. S2CID 7934949.
  2. ^ Teh, Y. W.; Jordan, M. I. (2010). Hierarchical Bayesian Nonparametric Models with Applications (PDF). Cambridge University Press. pp. 158–207. CiteSeerX 10.1.1.157.9451. doi:10.1017/CBO9780511802478.006. ISBN 9780511802478. {{cite book}}: |journal= ignored (help)
  3. ^ Cite error: The named reference beal2002 was invoked but never defined (see the help page).