The hierarchical equations of motion (HEOM) technique derived by Yoshitaka Tanimura and Ryogo Kubo in 1989,[1] is a non-perturbative approach developed to study the evolution of a density matrix of quantum dissipative systems. The method can treat system-bath interaction non-perturbatively as well as non-Markovian noise correlation times without the hindrance of the typical assumptions that conventional Redfield (master) equations suffer from such as the Born, Markovian and rotating-wave approximations. HEOM is applicable even at low temperatures where quantum effects are not negligible.
The hierarchical equation of motion for a system in a harmonic Markovian bath is[2]