Higgs boson

Higgs boson
Candidate Higgs boson events from collisions between protons in the LHC. The top event in the CMS experiment shows a decay into two photons (dashed yellow lines and green towers). The lower event in the ATLAS experiment shows a decay into four muons (red tracks).[a]
CompositionElementary particle
StatisticsBosonic
Symbol
H0
TheorisedR. Brout, F. Englert, P. Higgs, G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble (1964)
DiscoveredLarge Hadron Collider (2011–2013)
Mass125.11±0.11 GeV/c2[1]
Mean lifetime1.56×10−22 s[b] (predicted)
1.2 ~ 4.6×10−22 s (tentatively measured at 3.2 sigma (1 in 1,000) significance)[3][4]
Decays into
Electric chargee
Colour charge0
Spinħ[7][8]
Weak isospin1/2
Weak hypercharge+1
Parity+1[7][8]

The Higgs boson, sometimes called the Higgs particle,[9][10] is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field,[11][12] one of the fields in particle physics theory.[12] In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass.[13] It is also very unstable, decaying into other particles almost immediately upon generation.

The Higgs field is a scalar field with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its "Sombrero potential" leads it to take a nonzero value everywhere (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction and, via the Higgs mechanism, gives a rest mass to all massive elementary particles of the Standard Model, including the Higgs boson itself. The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered "the central problem in particle physics".[14][15]

Both the field and the boson are named after physicist Peter Higgs, who in 1964, along with five other scientists in three teams, proposed the Higgs mechanism, a way for some particles to acquire mass. All fundamental particles known at the time[c] should be massless at very high energies, but fully explaining how some particles gain mass at lower energies had been extremely difficult. If these ideas were correct, a particle known as a scalar boson should also exist (with certain properties). This particle was called the Higgs boson and could be used to test whether the Higgs field was the correct explanation.

After a 40-year search, a subatomic particle with the expected properties was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN near Geneva, Switzerland. The new particle was subsequently confirmed to match the expected properties of a Higgs boson. Physicists from two of the three teams, Peter Higgs and François Englert, were awarded the Nobel Prize in Physics in 2013 for their theoretical predictions. Although Higgs's name has come to be associated with this theory, several researchers between about 1960 and 1972 independently developed different parts of it.

In the media, the Higgs boson has often been called the "God particle" after the 1993 book The God Particle by Nobel Laureate Leon Lederman.[16] The name has been criticised by physicists,[17][18] including Peter Higgs.[19]


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).

  1. ^ "ATLAS sets record precision on Higgs boson's mass". 21 July 2023. Archived from the original on 22 July 2023. Retrieved 22 July 2023.
  2. ^ Dittmaier; Mariotti; Passarino; Tanaka; Alekhin; Alwall; Bagnaschi; Banfi; et al. (LHC Higgs Cross Section Working Group) (2012). Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (Report). CERN Report 2 (Tables A.1–A.20). Vol. 1201. p. 3084. arXiv:1201.3084. Bibcode:2012arXiv1201.3084L. doi:10.5170/CERN-2012-002. S2CID 119287417.
  3. ^ "Life of the Higgs boson" (Press release). CMS Collaboration. Archived from the original on 2 December 2021. Retrieved 21 January 2021.
  4. ^ a b "ATLAS finds evidence of a rare Higgs boson decay" (Press release). CERN. 8 February 2021. Archived from the original on 19 January 2022. Retrieved 21 January 2022.
  5. ^ ATLAS collaboration (2018). "Observation of H→bb decays and VH production with the ATLAS detector". Physics Letters B. 786: 59–86. arXiv:1808.08238. doi:10.1016/j.physletb.2018.09.013. S2CID 53658301.
  6. ^ CMS collaboration (2018). "Observation of Higgs boson decay to bottom quarks". Physical Review Letters. 121 (12): 121801. arXiv:1808.08242. Bibcode:2018PhRvL.121l1801S. doi:10.1103/PhysRevLett.121.121801. PMID 30296133. S2CID 118901756.
  7. ^ a b Cite error: The named reference CERN March 2013 was invoked but never defined (see the help page).
  8. ^ a b CMS Collaboration (2017). "Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state". Physics Letters B. 775 (2017): 1–24. arXiv:1707.00541. Bibcode:2017PhLB..775....1S. doi:10.1016/j.physletb.2017.10.021. S2CID 3221363.
  9. ^ Goulette, Marc (15 August 2012). "What should we know about the Higgs particle?" (blog). Atlas Experiment / CERN. Archived from the original on 13 January 2022. Retrieved 21 January 2022.
  10. ^ "Getting to know the Higgs particle: New discoveries!" (Press release). Institute of Physics. Archived from the original on 13 January 2022. Retrieved 21 January 2022.
  11. ^ Onyisi, P. (23 October 2012). "Higgs boson FAQ". University of Texas ATLAS group. Archived from the original on 12 October 2013. Retrieved 8 January 2013.
  12. ^ a b Strassler, M. (12 October 2012). "The Higgs FAQ 2.0". ProfMattStrassler.com. Archived from the original on 12 October 2013. Retrieved 8 January 2013. [Q] Why do particle physicists care so much about the Higgs particle?
    [A] Well, actually, they don't. What they really care about is the Higgs field, because it is so important. [emphasis in original]
  13. ^ Cite error: The named reference when higgs was invoked but never defined (see the help page).
  14. ^ Cite error: The named reference Proceedings_1986 was invoked but never defined (see the help page).
  15. ^ Cite error: The named reference Higgs_Hunters_Guide was invoked but never defined (see the help page).
  16. ^ Lederman, Leon M. (1993). The God Particle. Bantam Doubleday Dell. ISBN 0-385-31211-3.
  17. ^ Sample, Ian (29 May 2009). "Anything but the God particle". The Guardian. Archived from the original on 25 July 2018. Retrieved 24 June 2009.
  18. ^ Evans, Robert (14 December 2011). "The Higgs boson: Why scientists hate that you call it the 'God particle'". National Post. Archived from the original on 23 February 2015. Retrieved 3 November 2013.
  19. ^ Evans, Robert (7 April 2008). Lynn, Jonathan; Fussell, Chloe (eds.). "Key scientist sure "God particle" will be found soon". Reuters. Geneva. Retrieved 4 June 2024.