This article relies largely or entirely on a single source. (March 2024) |
In probability theory, Hoeffding's lemma is an inequality that bounds the moment-generating function of any bounded random variable,[1] implying that such variables are subgaussian. It is named after the Finnish–American mathematical statistician Wassily Hoeffding.
The proof of Hoeffding's lemma uses Taylor's theorem and Jensen's inequality. Hoeffding's lemma is itself used in the proof of Hoeffding's inequality as well as the generalization McDiarmid's inequality.