In chemistry, homolysis (from Greekὅμοιος (homoios) 'equal' and λύσις (lusis) 'loosening') or homolytic fission is the dissociation of a molecular bond by a process where each of the fragments (an atom or molecule) retains one of the originally bonded electrons. During homolytic fission of a neutral molecule with an even number of electrons, two free radicals will be generated.[1] That is, the two electrons involved in the original bond are distributed between the two fragment species. Bond cleavage is also possible by a process called heterolysis.
The energy involved in this process is called bond dissociation energy (BDE).[2] BDE is defined as the "enthalpy (per mole) required to break a given bond of some specific molecular entity by homolysis," symbolized as D.[3] BDE is dependent on the strength of the bond, which is determined by factors relating to the stability of the resulting radical species.
Because of the relatively high energy required to break bonds in this manner, homolysis occurs primarily under certain circumstances:
Certain intramolecular bonds, such as the O–O bond of a peroxide, are sufficiently weak to spontaneously homolytically dissociate near room temperature.
Most bonds homolyse at temperatures above 200°C.[4]
^St. John, P.C., Guan, Y., Kim, Y. et al. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat Commun 11, 2328 (2020). https://doi.org/10.1038/s41467-020-16201-z
^IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN0-9678550-9-8. https://doi.org/10.1351/goldbook.