This biographical article is written like a résumé. (May 2020) |
The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy-Maclaurin series to deal with the nonlinearities in the system.
The HAM was first devised in 1992 by Liao Shijun of Shanghai Jiaotong University in his PhD dissertation[1] and further modified[2] in 1997 to introduce a non-zero auxiliary parameter, referred to as the convergence-control parameter, c0, to construct a homotopy on a differential system in general form.[3] The convergence-control parameter is a non-physical variable that provides a simple way to verify and enforce convergence of a solution series. The capability of the HAM to naturally show convergence of the series solution is unusual in analytical and semi-analytic approaches to nonlinear partial differential equations.