Topological soliton
Model of magnetic hopfion in a solid. Bem is emergent magnetic field (orange arrows); in a hopfion, it does not align to the external magnetic field (black arrow).
A hopfion is a topological soliton .[ 1] [ 2] [ 3] [ 4] It is a stable three-dimensional localised configuration of a three-component field
n
→
=
(
n
x
,
n
y
,
n
z
)
{\displaystyle {\vec {n}}=(n_{x},n_{y},n_{z})}
with a knotted topological structure. They are the three-dimensional counterparts of 2D skyrmions , which exhibit similar topological properties in 2D. Hopfions are widely studied in many physical systems over the last half century.[ 5]
The soliton is mobile and stable: i.e. it is protected from a decay by an energy barrier . It can be deformed but always conserves an integer Hopf topological invariant. It is named after the German mathematician, Heinz Hopf .
A model that supports hopfions was proposed as follows:[ 1]
H
=
(
∂
n
)
2
+
(
ϵ
i
j
k
n
⋅
∂
i
n
×
∂
j
n
)
2
{\displaystyle H=(\partial {\bf {n}})^{2}+(\epsilon _{ijk}{\bf {n}}\cdot \partial _{i}{\bf {n}}\times \partial _{j}{\bf {n}})^{2}}
The terms of higher-order derivatives are required to stabilize the hopfions.
Stable hopfions were predicted within various physical platforms, including Yang–Mills theory,[ 6] superconductivity[ 7] [ 8] and magnetism.[ 9] [ 10] [ 11] [ 4]
^ a b Faddeev L, Niemi AJ (1997). "Stable knot-like structures in classical field theory". Nature . 387 (6628): 58–61. arXiv :hep-th/9610193 . Bibcode :1997Natur.387...58F . doi :10.1038/387058a0 . S2CID 4256682 .
^ Cite error: The named reference :1
was invoked but never defined (see the help page ).
^ Manton N, Sutcliffe P (2004). Topological solitons . Cambridge: Cambridge University Press. doi :10.1017/CBO9780511617034 . ISBN 0-511-21141-4 . OCLC 144618426 .
^ a b Kent N, Reynolds N, Raftrey D, Campbell IT, Virasawmy S, Dhuey S, et al. (March 2021). "Creation and observation of Hopfions in magnetic multilayer systems" . Nature Communications . 12 (1): 1562. arXiv :2010.08674 . Bibcode :2021NatCo..12.1562K . doi :10.1038/s41467-021-21846-5 . PMC 7946913 . PMID 33692363 .
^ "Hopfions in modern physics. Hopfion description" . hopfion.com . Retrieved 2024-11-04 .
^ Faddeev L, Niemi AJ (1999). "Partially Dual Variables in SU(2) Yang-Mills Theory". Physical Review Letters . 82 (8): 1624–1627. arXiv :hep-th/9807069 . Bibcode :1999PhRvL..82.1624F . doi :10.1103/PhysRevLett.82.1624 . S2CID 8281134 .
^ - Babaev E, Faddeev LD, Niemi AJ (2002). "Hidden symmetry and knot solitons in a charged two-condensate Bose system". Physical Review B . 65 (10): 100512. arXiv :cond-mat/0106152 . Bibcode :2002PhRvB..65j0512B . doi :10.1103/PhysRevB.65.100512 . S2CID 118910995 .
^ Rybakov FN, Garaud J, Babaev E (2019). "Stable Hopf-Skyrme topological excitations in the superconducting state". Physical Review B . 100 (9): 094515. arXiv :1807.02509 . Bibcode :2019PhRvB.100i4515R . doi :10.1103/PhysRevB.100.094515 . S2CID 118991170 .
^ Sutcliffe P (June 2017). "Skyrmion Knots in Frustrated Magnets". Physical Review Letters . 118 (24): 247203. arXiv :1705.10966 . Bibcode :2017PhRvL.118x7203S . doi :10.1103/PhysRevLett.118.247203 . PMID 28665663 . S2CID 29890978 .
^ Rybakov FN, Kiselev NS, Borisov AB, Döring L, Melcher C, Blügel S (2022). "Magnetic hopfions in solids". APL Materials . 10 (11). arXiv :1904.00250 . Bibcode :2022APLM...10k1113R . doi :10.1063/5.0099942 .
^ Voinescu R, Tai JB, Smalyukh II (July 2020). "Hopf Solitons in Helical and Conical Backgrounds of Chiral Magnetic Solids". Physical Review Letters . 125 (5): 057201. arXiv :2004.10109 . Bibcode :2020PhRvL.125e7201V . doi :10.1103/PhysRevLett.125.057201 . PMID 32794865 . S2CID 216036015 .