Hrushovski construction

In model theory, a branch of mathematical logic, the Hrushovski construction generalizes the Fraïssé limit by working with a notion of strong substructure rather than . It can be thought of as a kind of "model-theoretic forcing", where a (usually) stable structure is created, called the generic or rich [1] model. The specifics of determine various properties of the generic, with its geometric properties being of particular interest. It was initially used by Ehud Hrushovski to generate a stable structure with an "exotic" geometry, thereby refuting Zil'ber's Conjecture.