Hypoxanthine

Hypoxanthine
Names
Preferred IUPAC name
1,9-Dihydro-6H-purin-6-one
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.634 Edit this at Wikidata
KEGG
MeSH Hypoxanthine
UNII
  • InChI=1S/C5H4N4O/c10-5-3-4(7-1-6-3)8-2-9-5/h1-2H,(H2,6,7,8,9,10) checkY
    Key: FDGQSTZJBFJUBT-UHFFFAOYSA-N checkY
  • InChI=1/C5H4N4O/c10-5-3-4(7-1-6-3)8-2-9-5/h1-2H,(H2,6,7,8,9,10)
    Key: FDGQSTZJBFJUBT-UHFFFAOYAJ
  • c1[nH]c2c(n1)[nH]cnc2=O
Properties
C5H4N4O
Molar mass 136.112
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Hypoxanthine is a naturally occurring purine derivative. It is occasionally found as a constituent of nucleic acids, where it is present in the anticodon of tRNA in the form of its nucleoside inosine. It has a tautomer known as 6-hydroxypurine. Hypoxanthine is a necessary additive in certain cells, bacteria, and parasite cultures as a substrate and nitrogen source. For example,[1][2] it is commonly a required reagent in malaria parasite cultures, since Plasmodium falciparum requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism.

In August 2011, a report, based on NASA studies with meteorites found on Earth, was published suggesting hypoxanthine and related organic molecules, including the DNA and RNA components adenine and guanine, may have been formed extraterrestrially in outer space.[3][4][5]

The Pheretima aspergillum worm, used in Chinese medicine preparations, contains hypoxanthine.[6]

  1. ^ "Estimation of Plasmodium falciparum drug susceptibility by the 3H-hypoxanthine uptake inhibition assay" (PDF). Worldwide Antimalarial Resistance Network. Archived (PDF) from the original on 2022-10-09. Retrieved 2017-01-20.
  2. ^ Brockman, A.; Price, R.N.; van Vugt, M.; Heppner, D.G.; Walsh, D.; Sookto, P.; Wimonwattrawatee, T.; Looareesuwan, S.; White, N.J.; Nosten, F. (September 2000). "Plasmodium falciparum antimalarial drug susceptibility on the north-western border of Thailand during five years of extensive use of artesunate-mefloquine". Transactions of the Royal Society of Tropical Medicine and Hygiene. 94 (5): 537–544. doi:10.1016/S0035-9203(00)90080-4. PMC 4340572. PMID 11132385.
  3. ^ Callahan; Smith, K.E.; Cleaves, H.J.; Ruzica, J.; Stern, J.C.; Glavin, D.P.; House, C.H.; Dworkin, J.P. (11 August 2011). "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases". Proceedings of the National Academy of Sciences of the United States of America. 108 (34): 13995–13998. Bibcode:2011PNAS..10813995C. doi:10.1073/pnas.1106493108. PMC 3161613. PMID 21836052.
  4. ^ Steigerwald, John (8 August 2011). "NASA Researchers: DNA Building Blocks Can Be Made in Space". NASA. Archived from the original on 2015-06-23. Retrieved 2011-08-10.
  5. ^ ScienceDaily Staff (9 August 2011). "DNA Building Blocks Can Be Made in Space, NASA Evidence Suggests". ScienceDaily. Retrieved 2011-08-09.
  6. ^ The Pharmacology of Chinese Herbs, Second Edition By Kee C. Huang