Icebreaker Life

Icebreaker Life
Icebreaker Life would be based on the Phoenix and InSight landers[1][2]
Mission typeMars lander
OperatorNASA
Mission duration90 sols
Spacecraft properties
BusBased on Phoenix and InSight landers
ManufacturerLockheed Martin Space Systems
Launch mass~670 kg (1,480 lb)
Landing mass~350 kg (770 lb)
DimensionsDeployed: 6.0 × 1.56 × 1.0 m (19.7 × 5.1 × 3.3 ft)[3]
Power~450 W, Solar array / NiH2 battery
Start of mission
Launch date2026 (proposed)[4]
Mars lander
Landing siteBetween 60°N and 70°N
(68°13′N 125°42′W / 68.22°N 125.7°W / 68.22; -125.7 (Icebreaker Life) proposed - near the Phoenix site[1] )

Icebreaker Life is a Mars lander mission concept proposed to NASA's Discovery Program.[5] The mission involves a stationary lander that would be a near copy of the successful 2008 Phoenix and InSight spacecraft, but would carry an astrobiology scientific payload, including a drill to sample ice-cemented ground in the northern plains to conduct a search for biosignatures of current or past life on Mars.[1][6]

The science goals for Icebreaker Life focus on sampling ice-cemented ground for its potential to preserve and protect biomolecules or biosignatures.[2][7]

Icebreaker Life was not selected during the 2015 or 2019 Discovery Program competitions.

  1. ^ a b c Choi, Charles Q. (16 May 2013). "Icebreaker Life Mission". Astrobiology Magazine. Archived from the original on 2020-09-23. Retrieved 2013-07-01.{{cite news}}: CS1 maint: unfit URL (link)
  2. ^ a b Gronstal, Aaron L. (April 18, 2014). "Proposed Mars 'Icebreaker' mission detailed". Phys Org. Retrieved 2014-10-13.
  3. ^ "InSight Lithograph" (PDF). NASA. July 2015. LG-2015-07-072-HQ. Archived from the original (PDF) on 2017-02-09. Retrieved 2019-02-06.
  4. ^ Mann, A (2018). "Inner Workings: Hunting for microbial life throughout the solar system". Proc Natl Acad Sci U S A. 115 (45): 11348–11350. doi:10.1073/pnas.1816535115. PMC 6233070. PMID 30401758. Quote: […] is readying Icebreaker to compete in NASA's next round of Discovery funding, and the mission could be selected in the next few years and be ready by 2026.
  5. ^ McKay, Christopher P.; Carol R. Stoker; Brian J. Glass; Arwen I. Davé; Alfonso F. Davila; Jennifer L. Heldmann; Margarita M. Marinova; Alberto G. Fairen; Richard C. Quinn; Kris A. Zacny; Gale Paulsen; Peter H. Smith; Victor Parro; Dale T. Andersen; Michael H. Hecht; Denis Lacelle & Wayne H. Pollard (April 5, 2013). "The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life". Astrobiology. 13 (4): 334–353. Bibcode:2013AsBio..13..334M. doi:10.1089/ast.2012.0878. PMID 23560417.
  6. ^ McKay, C. P.; Carol R. Stoker; Brian J. Glass; Arwen I. Davé; Alfonso F. Davila; Jennifer L. Heldmann; Margarita M. Marinova; Alberto G. Fairen; Richard C. Quinn; Kris A. Zacny; Gale Paulsen; Peter H. Smith; Victor Parro; Dale T. Andersen; Michael H. Hecht; Denis Lacelle & Wayne H. Pollard (2012). "THE ICEBREAKER LIFE MISSION TO MARS: A SEARCH FOR BIOCHEMICAL EVIDENCE FOR LIFE" (PDF). Concepts and Approaches for Mars Exploration. Lunar and Planetary Institute.
  7. ^ Glass, B. J.; Dave, A.; McKay, C. P.; Paulsen, G. (2014). "Robotics and Automation for 'Icebreaker'". J. Field Robotics. 31 (1): 192–205. Bibcode:2013JFRob...2..192G. doi:10.1002/rob.21487. S2CID 8971380.