In geometry, an improper rotation[1] (also called rotation-reflection,[2] rotoreflection,[1] rotary reflection,[3] or rotoinversion[4]) is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each a special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation.[5] It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.
Group | S4 | S6 | S8 | S10 | S12 |
---|---|---|---|---|---|
Subgroups | C2 | C3, S2 = Ci | C4, C2 | C5, S2 = Ci | C6, S4, C3, C2 |
Example | beveled digonal antiprism |
triangular antiprism |
square antiprism |
pentagonal antiprism |
hexagonal antiprism |
Antiprisms with directed edges have rotoreflection symmetry. p-antiprisms for odd p contain inversion symmetry, Ci. |