Infinitary combinatorics

In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum[1] and combinatorics on successors of singular cardinals.[2]

  1. ^ Andreas Blass, Combinatorial Cardinal Characteristics of the Continuum, Chapter 6 in Handbook of Set Theory, edited by Matthew Foreman and Akihiro Kanamori, Springer, 2010
  2. ^ Todd Eisworth, Successors of Singular Cardinals Chapter 15 in Handbook of Set Theory, edited by Matthew Foreman and Akihiro Kanamori, Springer, 2010