Infinite dihedral group

p1m1, (*∞∞) p2, (22∞) p2mg, (2*∞)



In 2-dimensions three frieze groups p1m1, p2, and p2mg are isomorphic to the Dih group. They all have 2 generators. The first has two parallel reflection lines, the second two 2-fold gyrations, and the last has one mirror and one 2-fold gyration.
In one dimension, the infinite dihedral group is seen in the symmetry of an apeirogon alternating two edge lengths, containing reflection points at the center of each edge.

In mathematics, the infinite dihedral group Dih is an infinite group with properties analogous to those of the finite dihedral groups.

In two-dimensional geometry, the infinite dihedral group represents the frieze group symmetry, p1m1, seen as an infinite set of parallel reflections along an axis.