Integer-valued polynomial

In mathematics, an integer-valued polynomial (also known as a numerical polynomial) is a polynomial whose value is an integer for every integer n. Every polynomial with integer coefficients is integer-valued, but the converse is not true. For example, the polynomial

takes on integer values whenever t is an integer. That is because one of t and must be an even number. (The values this polynomial takes are the triangular numbers.)

Integer-valued polynomials are objects of study in their own right in algebra, and frequently appear in algebraic topology.[1]

  1. ^ Johnson, Keith (2014), "Stable homotopy theory, formal group laws, and integer-valued polynomials", in Fontana, Marco; Frisch, Sophie; Glaz, Sarah (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer, pp. 213–224, ISBN 9781493909254. See in particular pp. 213–214.