Interbilayer forces in membrane fusion

Membrane fusion is a key biophysical process that is essential for the functioning of life itself. It is defined as the event where two lipid bilayers approach each other and then merge to form a single continuous structure.[1] In living beings, cells are made of an outer coat made of lipid bilayers; which then cause fusion to take place in events such as fertilization, embryogenesis and even infections by various types of bacteria and viruses.[2] It is therefore an extremely important event to study. From an evolutionary angle, fusion is an extremely controlled phenomenon. Random fusion can result in severe problems to the normal functioning of the human body. Fusion of biological membranes is mediated by proteins. Regardless of the complexity of the system, fusion essentially occurs due to the interplay of various interfacial forces, namely hydration repulsion, hydrophobic attraction and van der Waals forces.[3]

  1. ^ Yang, L. (2002-09-13). "Observation of a Membrane Fusion Intermediate Structure". Science. 297 (5588). American Association for the Advancement of Science (AAAS): 1877–1879. Bibcode:2002Sci...297.1877Y. doi:10.1126/science.1074354. ISSN 0036-8075. PMID 12228719. S2CID 45362358.
  2. ^ Jahn, Reinhard; Grubmüller, Helmut (2002). "Membrane fusion". Current Opinion in Cell Biology. 14 (4). Elsevier BV: 488–495. doi:10.1016/s0955-0674(02)00356-3. ISSN 0955-0674. PMID 12383801.
  3. ^ Helm, Christiane A.; Israelachvili, Jacob N.; McGuiggan, Patty M. (1992-02-18). "Role of hydrophobic forces in bilayer adhesion and fusion". Biochemistry. 31 (6). American Chemical Society (ACS): 1794–1805. doi:10.1021/bi00121a030. ISSN 0006-2960. PMID 1737032.