Inverse-Wishart distribution

Inverse-Wishart
Notation
Parameters degrees of freedom (real)
, scale matrix (pos. def.)
Support is p × p positive definite
PDF

Mean For
Mode [1]: 406 
Variance see below

In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

We say follows an inverse Wishart distribution, denoted as , if its inverse has a Wishart distribution . Important identities have been derived for the inverse-Wishart distribution.[2]

  1. ^ A. O'Hagan, and J. J. Forster (2004). Kendall's Advanced Theory of Statistics: Bayesian Inference. Vol. 2B (2 ed.). Arnold. ISBN 978-0-340-80752-1.
  2. ^ Haff, LR (1979). "An identity for the Wishart distribution with applications". Journal of Multivariate Analysis. 9 (4): 531–544. doi:10.1016/0047-259x(79)90056-3.