Notation | |||
---|---|---|---|
Parameters |
degrees of freedom (real) , scale matrix (pos. def.) | ||
Support | is p × p positive definite | ||
| |||
Mean | For | ||
Mode | [1]: 406 | ||
Variance | see below |
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
We say follows an inverse Wishart distribution, denoted as , if its inverse has a Wishart distribution . Important identities have been derived for the inverse-Wishart distribution.[2]