Invex function

In vector calculus, an invex function is a differentiable function from to for which there exists a vector valued function such that

for all x and u.

Invex functions were introduced by Hanson as a generalization of convex functions.[1] Ben-Israel and Mond provided a simple proof that a function is invex if and only if every stationary point is a global minimum, a theorem first stated by Craven and Glover.[2][3]

Hanson also showed that if the objective and the constraints of an optimization problem are invex with respect to the same function , then the Karush–Kuhn–Tucker conditions are sufficient for a global minimum.

  1. ^ Hanson, Morgan A. (1981). "On sufficiency of the Kuhn-Tucker conditions". Journal of Mathematical Analysis and Applications. 80 (2): 545–550. doi:10.1016/0022-247X(81)90123-2. hdl:10338.dmlcz/141569. ISSN 0022-247X.
  2. ^ Ben-Israel, A.; Mond, B. (1986). "What is invexity?". The ANZIAM Journal. 28 (1): 1–9. doi:10.1017/S0334270000005142. ISSN 1839-4078.
  3. ^ Craven, B. D.; Glover, B. M. (1985). "Invex functions and duality". Journal of the Australian Mathematical Society. 39 (1): 1–20. doi:10.1017/S1446788700022126. ISSN 0263-6115.