Ischemic cell death

Ischemic cell death, or oncosis, is a form of accidental cell death. The process is characterized by an ATP depletion within the cell leading to impairment of ionic pumps, cell swelling, clearing of the cytosol, dilation of the endoplasmic reticulum and golgi apparatus, mitochondrial condensation, chromatin clumping, and cytoplasmic bleb formation.[1] Oncosis refers to a series of cellular reactions following injury that precedes cell death. The process of oncosis is divided into three stages. First, the cell becomes committed to oncosis as a result of damage incurred to the plasma membrane through toxicity or ischemia, resulting in the leak of ions and water due to ATP depletion.[2] The ionic imbalance that occurs subsequently causes the cell to swell without a concurrent change in membrane permeability to reverse the swelling.[3] In stage two, the reversibility threshold for the cell is passed and the cell becomes committed to cell death. During this stage the membrane becomes abnormally permeable to trypan blue and propidium iodide, indicating membrane compromise.[4] The final stage is cell death and removal of the cell via phagocytosis mediated by an inflammatory response.[5]

  1. ^ Weerasinghe, Priya, and L. Maximilian Buja. "Oncosis: an important non-apoptotic mode of cell death." Experimental and molecular pathology 93.3 (2012): 302-308.
  2. ^ Weerasinghe, Priya, and L. Maximilian Buja. "Oncosis: an important non-apoptotic mode of cell death." Experimental and molecular pathology 93.3 (2012): 302-308.
  3. ^ Weerasinghe, Priya, and L. Maximilian Buja. "Oncosis: an important non-apoptotic mode of cell death." Experimental and molecular pathology 93.3 (2012): 302-308.
  4. ^ Weerasinghe, Priya, and L. Maximilian Buja. "Oncosis: an important non-apoptotic mode of cell death." Experimental and molecular pathology 93.3 (2012): 302-308.
  5. ^ Scarabelli, T. M., Knight, R., Stephanou, A., Townsend, P., Chen-Scarabelli, C., Lawrence, K., Gottlieb, R., Latchman, D., & Narula, J. (2006). Clinical implications of apoptosis in ischemic myocardium. Current problems in cardiology, 31(3), 181-264.