Isochron dating

An isochron plot of the radiogenic daughter isotope (D*) against the parent isotope (P), all normalized to a stable isotope of the daughter element (Dref). It demonstrates the isotopic evolution as the sample ages from t0 to t1 to t2.

Isochron dating is a common technique of radiometric dating and is applied to date certain events, such as crystallization, metamorphism, shock events, and differentiation of precursor melts, in the history of rocks. Isochron dating can be further separated into mineral isochron dating and whole rock isochron dating; both techniques are applied frequently to date terrestrial and extraterrestrial rocks (meteorites and Moon rocks). The advantage of isochron dating as compared to simple radiometric dating techniques is that no assumptions are needed about the initial amount of the daughter nuclide in the radioactive decay sequence. Indeed, the initial amount of the daughter product can be determined using isochron dating. This technique can be applied if the daughter element has at least one stable isotope other than the daughter isotope into which the parent nuclide decays.[1][2][3]

  1. ^ Albarède, Francis (2009). "4.3 The isochron method". Geochemistry: An Introduction. Cambridge University Press. ISBN 9781107268883.
  2. ^ Young, Matt; Strode, Paul K. (2009). Why evolution works (and creationism fails). New Brunswick, N.J.: Rutgers University Press. pp. 151–153. ISBN 9780813548647.
  3. ^ Prothero, Donald R.; Schwab, Fred (2004). Sedimentary geology : an introduction to sedimentary rocks and stratigraphy (2nd ed.). New York: Freeman. ISBN 9780716739050.