Isothermal titration calorimetry

Isothermal Titration Calorimetry
AcronymITC
ClassificationThermal analysis
ManufacturersTA Instruments, Microcal/Malvern Instruments
Other techniques
RelatedIsothermal microcalorimetry
Differential scanning calorimetry
MicroCal. VP-ITC in a glove box.

In chemical thermodynamics, isothermal titration calorimetry (ITC) is a physical technique used to determine the thermodynamic parameters of interactions in solution.[1][2] It is most often used to study the binding of small molecules (such as medicinal compounds) to larger macromolecules (proteins, DNA etc.) in a label-free environment.[3][4] It consists of two cells which are enclosed in an adiabatic jacket. The compounds to be studied are placed in the sample cell, while the other cell, the reference cell, is used as a control and contains the buffer in which the sample is dissolved.

The technique was developed by H. D. Johnston in 1968 as a part of his Ph.D. dissertation at Brigham Young University,[5] and was considered niche until introduced commercially by MicroCal Inc. in 1988. Compared to other calorimeters, ITC has an advantage in not requiring any correctors since there was no heat exchange between the system and the environment.

  1. ^ Freire, Ernesto; Mayorga, Obdulio L.; Straume, Martin (1990-09-01). "Isothermal titration calorimetry". Analytical Chemistry. 62 (18): 950A–9A. doi:10.1021/ac00217a002. ISSN 0003-2700.
  2. ^ Grolier, Jean-Pierre E.; del Río, José Manuel (2012). "Isothermal titration calorimetry: A thermodynamic interpretation of measurements". The Journal of Chemical Thermodynamics. 55: 193–202. Bibcode:2012JChTh..55..193G. doi:10.1016/j.jct.2012.05.018.
  3. ^ Serdyuk; Zaccai; Zaccai (2017). "C3 Isothermal Titration Calorimetry". Methods in molecular biophysics: Structure, dynamics, function. Cambridge University Press. pp. 221–233. doi:10.1017/CBO9780511811166. ISBN 978-0-511-64901-1.
  4. ^ Kuriyan; Conforti; Wemmer (2013). "12.23 Isothermal titration calorimetry allows us to determine the enthalpic and entropic components of the binding free energy.". The molecules of life: Physical and chemical principles. Garland Publishing. pp. 573–7.
  5. ^ Johnston, H.D. (1968). The thermodynamics (log K, ΔH°, ΔS°, ΔCp°) of metal ligand interaction in aqueous solution (PhD). Brigham Young University.