This article needs additional citations for verification. (May 2018) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Rb) | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rubidium (37Rb) has 36 isotopes, with naturally occurring rubidium being composed of just two isotopes; 85Rb (72.2%) and the radioactive 87Rb (27.8%).
87Rb has a half-life of 4.92×1010 years. It readily substitutes for potassium in minerals, and is therefore fairly widespread. 87Rb has been used extensively in dating rocks; 87Rb decays to stable strontium-87 by emission of a beta particle (an electron ejected from the nucleus). During fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. The highest ratios (10 or higher) occur in pegmatites. If the initial amount of Sr is known or can be extrapolated, the age can be determined by measurement of the Rb and Sr concentrations and the 87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered. See rubidium–strontium dating for a more detailed discussion.
Other than 87Rb, the longest-lived radioisotopes are 83Rb with a half-life of 86.2 days, 84Rb with a half-life of 33.1 days, and 86Rb with a half-life of 18.642 days. All other radioisotopes have half-lives less than a day.
82Rb is used in some cardiac positron emission tomography scans to assess myocardial perfusion. It has a half-life of 1.273 minutes. It does not exist naturally, but can be made from the decay of 82Sr.